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Abstract 

A crystal-chemical model of atomic interactions has 
been suggested to explain the diversity of inorganic 
structure types, their translational symmetry, and other 
basic characteristics. The model is based on the 
concepts of the minimum potential energy of a crystal 
and energy contributions to the total energy of a crystal 
which come not only from the first coordination sphere 
but also from the second, third and subsequent 
coordination spheres. The minimum potential energy is 
provided by coordination spheres in the shape of the 
Platonic regular solids or Archimedean semiregular 
solids and also by polyhedra having triangular faces. 
The model is applicable to materials with different types 
of chemical bonding - metals, nonmetals (diamond), 
ionic compounds and substances with van der Waals 
atomic interactions. 

Introduction 

The most general rule explaining the formation of 
crystals is the principle of maximum filling of space 
(Vainshtein, Fridkin & Indenbom, 1983)which says 
that if the forces acting on atoms or complex structure 
units of a crystal are of a central or almost central 
nature, then such atoms or units always tend to 
approach one another so that the number of admissible 
shortest contacts is maximal. We may also put it in 
another way: there is a trend to the maximum number 
of atoms or structural units in the unit volume v with 
distances rtj between atoms (structure units) not shorter 
than standard admissible values rst: 

n/V(rt./> rst) --* max. 

This geometrical principle is, to some extent, a 
universal one since it corresponds to the minimum 
potential energy of the system. The energy U of a 
crystal may be determined rather accurately (with the 
exception of intermetallic compounds) if it is con- 
sidered that the total potential energy is a sum of 
functions Uik(rik ) over all possible atomic pairs 

U : ½ ~. Uik(rik ). (1) 
i,k 

The greater the number of atoms approaching one 
another up to equilibrium interatomic distances, i.e., the 
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more terms with maximum uik(rik ) values in (1), the 
higher is the energy U. 

The principle of the maximum filling of space is also 
known in its modified form as the principle of closest 
packing. It has been considered in detail for inorganic 
compounds by Belov (1947). However, the densest 
packing of spheres fails to explain not only the whole 
diversity of known structure types but even crystal 
structures of the simplest substances, e.g., of transition 
metals from groups V and VI of the Periodic Table. 
These substances are characterized by body-centered 
cubic (b.c.c.) unit cells in which the density of space 
filling (68.01%) is essentially lower than that for the 
closest packing of spheres (74.05%). 

The energy of crystal formation from melts may 
roughly be estimated from such experimentally 
determinable quantities as the enthalpy of crystal 
melting - the higher the melting enthalpy the higher the 
crystal energy. 

Let us consider the melting enthalpy for 4d and 5d 
elements from Nd to Ag and from Ta to Au 
(Knunyants, 1983). The choice of this series of metals 
was dictated by several factors. Firstly, they show no 
phase transitions up to the melting point and secondly, 
electrons in these metals fill inner d shells and not outer 
electron shells, which 'smoothes' the difference in the 
individual properties of the atoms, in particular their 
metallic radii. Close atomic dimensions in these groups 
are a prerequisite for approximate equality of the 
energies of interaction between different pairs of atoms 
in a crystal under the condition that these energies are 
dependent mainly on interatomic distances. But one can 
clearly see three different groups of elements in the 
above two series with different types of crystal 
structures (Table 1). The first group includes the metals 
of groups V and VI of the Periodic Table which have 
b.c.c, structures. An increase of the melting enthalpy in 
the transition from group V to group VI may be 
explained by a decrease in the atomic radii of the metals 
(Wells, 1984). A further decrease of atomic radii in the 
transition to group VII should result in a still further 
increase of the melting enthalpy, but instead it drops, 
which may be ascribed to the change of the structure to 
an h.c.p, type. A jumpwise decrease of the melting 
enthalpy is also observed when an h.c.p, structure is 
transformed into an f.c.c, one. Note here that this jump 
is independent of the variations in atomic radii, which 
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Table 1. Melting enthalpies (AHm), crystal structure 
types, metallic radii and unit-cell dimensions for 

transition metals 
Nb Mo 

AH= (kJ tool -~) 27.6 36 
Crystal structure type b.e.c, b.c.c. 
Metallic radius (,~) 1.47 1.40 
Unit-cell a 3.294 3.140 

dimensions (./Q c 

Ta  W 
,JH m (kJ mol -~) 34-7 61.5 
Crystal structure type b.c.c, b.c.c. 
Metallic radius (A) 1.47 1.47 
Unit-cell a 3.30 3.16 

dimensions (A) c 

Tc Ru Rh Pd Ag 
24 24 20.0 16.7 11.3 
h.c.p, h.c.p, f.c.c, f.c.c, f.c.c. 

1.35 1.34 1.34 1.37 1.44 
2.74 2.70 3.80 3.88 4.08 
4.39 4.27 

Re Os lr Pt Au 
33 31.8 26.0 20.0 12.5 
h.c.p, h.c.p, f.c.c, f.c.c, f.c.c. 

1.37 1.35 1.36 1.39 1.44 
2.76 2.73 3.83 3.92 4.07 
4.45 4.31 

are almost the same for Ru and Rh as for Os and Ir. A 
further decrease in the melting enthalpy for Rh, Pd, Ag 
and Ir, Pt, Au seems to be due to a monotonic increase 
of atomic radii. 

The crystal energy depends not only on the energies 
of pair interactions but also on the number of such 
interactions. It is the sum of such interactions which 
determines the total energy of the crystal. It is natural 
to expect that the melting enthalpy in b.c.c, structures 
with no close packing should be lower since the number 
of the shortest interatomic contacts is small (only eight 
in comparison with twelve in h.c.p, and f.c.c, struc- 
tures). However, the experimental data contradict such 
a conclusion. The experimentally observed values of the 
melting enthalpy may be explained from the crystal 
structure standpoint if b.c.c, structures are taken to be 
formed by atoms which may interact within quite a 
large range of distances. This essentially increases the 
number of possible pairwise atomic interactions includ- 
ing those between the atoms of the second and perhaps 
of the following coordination spheres. Developing this 
hypothesis further, we should also assume that in h.c.p. 
structures the pair interactions occur in a more limited 
region around the central atoms whereas in f.c.c. 
structures the crystal energy is due mainly to the 
interactions between the atoms of the first coordination 
sphere. 

As far as we know, there is no reliable information on 
the energy of pair interactions for the crystals listed in 
Table 1. But it may be assumed that the dependence of 
such an energy on the interatomic distances may be 
described by a Morse-like function (Fig. 1). Then the 
above hypothesis yields that the curves which describe 
the pair-interaction energies as a function of inter- 
atomic distance should have mild minima (c) for b.c.c. 
structures, in f.c.c, structures they should be steep (a), 
and in h.c.p, structures the profile should be of a type 
(b) intermediate between (a) and (c). 

In recent years crystal structures of inorganic 
compounds have been calculated with molecular- 
mechanics methods (Parker, 1983; Parker, Catlow & 
Cormack, 1983; Catlow, Cormack & Theobald, 1984; 
Urusov & Dubrovinskii, 1985) by minimizing the total 
energy of the pair atomic interactions in crystals. For 

each pair of atoms the interaction energy is a function 
of interatomic distance and is described by Morse 
curves. 

The minimization of the crystal energy in the 
atom-atom approximation is carried out with al- 
lowance for the interaction between the atom under 
consideration and all other atoms within a sphere of a 
radius of 30 or even 60/~, with the center at the chosen 
atom (Urusov & Dubrovinskii, 1985). Therefore one 
should take into account not only the contributions to 
the total energy which come from the interaction 
between the chosen atom and the atoms from the first 
coordination sphere, but also the contributions due to 
the interactions with atoms from the subsequent 
coordination spheres. Such contributions should be 
either essential if the interaction of atoms in a crystal is 
described by curve (c) in Fig. 1 or nonessential if they 
are described by interactions of type (a) (Fig. 1). This 
fact shows that in the analysis of a crystal structure not 
only the first coordination sphere should be considered. 
Such an analysis should also include the second, third 
and perhaps subsequent coordination spheres. Below 
we suggest a method for such an analysis and illustrate 
it by several practical examples. 

Desedption of the model 

The minimum of the potential energy for a set of atoms 
included in a coordination sphere depends not only on 
its radius and the number of atoms in it, but also on the 
mutual positions of atoms inside the coordination 
sphere. Consider first the condition for the minimum of 
the potential energy for a group of atoms from one 
coordination sphere of arbitrary radius. 

We define as central lines those lines passing through 
the central atom and any other atom of its coordi- 
nation sphere. The potential energy of such a 'com- 
plex'* is minimal if the following conditions are met: (i) 
all central lines should form equal angles with the 

*The term 'complex' is conventional for crystals of elemental 
substances. We use it here for brevity implying that the distances 
from the central atom of such a complex to all the atoms of the 
coordination sphere are equal. 

(b) (c) 

Fig. 1. Atomic interaction curves: (a) f.c.c., (b) h.c.p., (c) b.c.c. 
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nearest central lines and (ii) all central lines should be 
equally surrounded by other central lines. Proceeding 
from these conditions, it is possible to find analytical 
expressions which allow one to examine the arrange- 
ment of central lines in the space. For crystals, the 
geometrical approach is more convenient. Then the 
above conditions may be reformulated. 

Let us connect the centers of atoms/ligands by 
straight lines. We obtain a polyhedron inscribed into a 
sphere. The above conditions may then be formulated 
as follows: (i) all the edges of a polyhedron inscribed 
into a sphere should be equal and (ii) all the polyhedral 
angles of a polyhedron inscribed into a sphere should be 
congruent or symmetric. It follows from the second 
condition that each polyhedron may have only one type 
of polyhedral angles. These requirements are met by the 
Platonic regular solids (PRS's) and Archimedean 
semiregular solids (ASRS's) listed in Table 2. These 
polyhedra have been depicted by Wenninger (1971). 
The ASRS's include not only solids obtained by the 
truncation of a cube or an icosahedron but also of all 
prisms and antiprisms. However, not all of them should 
be taken into consideration since with an increase of the 
number m of sides of multiangular faces for such prisms 
and antiprisms the coordination polyhedron becomes 
thinner and flatter, transforming into a circumference 
for m--,oo, thus losing sense as a coordination 
polyhedron. In addition to the above-mentioned solids 
one should also take into account the Archimedean- 
Ashkinusean semiregular solid (Ashkinuze, 1957). It 
should be noted that the maximum distances between 
the points on a sphere are obtained when all the faces of 
an inscribed polyhedron are triangular. For a coordi- 
nation number of eight, a preferable polyhedron is a 
dodecahedron (Fig. 2) and not a cube or a tetragonal 
antiprism. This example shows that the PRS's and 
ASRS's should be supplemented with polyhedra whose 
shape may be established experimentally as a result of 
special investigation. 

One more note about the shape of coordination 
polyhedra. In a series of ASRS's each antiprism has a 
corresponding prism; if a tetrahedron is considered as 
an antiprism built from two dumbbells, then a square 
should be considered as a prism corresponding to a 
tetrahedron. A square is necessary for the analysis of a 
number of structures. Two more figures are also 
necessary for such an analysis - an equilateral triangle 
and a dumbbell. 

The PRS's and ASRS's with symmetry O h can 
combine to form crystals, whereas those with sym- 
metry I h cannot make such combinations owing to the 
presence of fivefold axes. Nevertheless, polyhedra with 
symmetry I h may form crystal fragments and the 
conditions of their existence should be a subject of 
special consideration. The combinations of the PRS's 
and ASRS's taken as coordination spheres result in a 
great diversity of space lattices, many of which 

r~ 
Tetrahedron 4 

Truncated 
tetrahedron 12 

Table 2. PRS's  and A S R S ' s  with symmetries T d, O h, I h 
with the number of  polyhedron vertices 

Oh lh 
Octahedron 6 lcosahedron 12 

Cube 8 Dodecahedron 20 

Cuboctahedron 12 

Rhombicuboctahedron 24 

Truncated cube 24 

Truncated octahedron 24 

Snub cube 24 

Rhombitruncated 
cuboctahedron 48 

lcosidodecahedron 30 

Rhombicosidodecahedron 60 

Truncated icosahedron 60 

Truncated dodecahedron 60 

Snub dodecahedron 60 

Rhombitruncated 
icosidodecahedron 120 

correspond to real structures. At the beginning, we 
neglect the symmetry reduction associated with the 
anisotropy of atomic interactions in crystals, the 
different size of atoms and other factors, and verify our 
model on cubic crystals. 

Model verification* 

Thus, as has been shown, in order to evaluate the 
crystal energy one should take into account two factors 
- the number of atoms within each coordination sphere 
[the larger the number, the more terms in (1) and the 
lower the potential energy of the crystal] and the range 
of the atomic interactions in crystals, which affects the 
shape of curves shown in Fig. 1. For a small range of 
interactions [curve (a), Fig. 1 corresponds to f.c.c. 
structures] the minimum of the potential energy may be 
attained for the maximum number of neighbors (12 for 
identical atoms) in the first coordination sphere. Of all 
the PRS's and ASRS's the minimum interaction energy 
for atoms from the first coordination sphere may be 
expected for an icosahedron, since all its faces are 
triangular and therefore the distances between its 
vertices are maximal among all dodecagons of the 
PRS's and ASRS's. However, an undistorted icosahed- 
ron cannot form a three-dimensional crystal lattice 
since it has fivefold axes. Therefore in crystals a 
cuboctahedron consisting of six square and eight 
triangular faces turns out to be preferable. The third 
dodecatop, a truncated tetrahedron, consists of four 

* T h e  d a t a  on  s p a c e  g r o u p s  a n d  a t o m i c  c o o r d i n a t e s  o f  the  
s t ruc tu res  c o n s i d e r e d  in this  sec t ion  a re  t aken  (with s o m e  
excep t ions )  f rom Metals Reference Book (Smithe i l s ,  1976). 

Fig .  2. A n  e igh t -ve r t ex  d o d e c a h e d r o n .  
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hexagonal and four triangular faces and therefore the 
interatomic distances in this dodecatop may turn out to 
be shorter than those corresponding to the minimum of 
curve (a) (Fig. 1) whereas the interaction energy may 
be higher than for a cuboctahedron. Thus for crystals 
the most favorable dodecatop is a cuboctahedron. This 
is found for f.c.c, structures. 

Among simple substances, f.c.c, structures (in which 
any atom is surrounded by neighbors occupying the 
vertices of a cuboctahedron) are very common. These 
include numerous metals, e.g., copper, and also all inert 
gases except helium. The contribution made by the 
second and distant coordination spheres to the total 
energy of a crystal with an f.c.c, structure may be rather 
modest in comparison with that made by the first one. 
Such a conclusion is drawn from the comparison of 
such a structure with b.c.c, ones common for metals (V, 
Nb, Ta, Mo, etc.). 

The first coordination sphere in b.c.c, crystals is a 
cube, the second an octahedron. Together they form an 
equifacial semiregular polyhedron - a rhombidodeca- 
hedron - which is a dual cuboctahedron. Thus the 
third coordination sphere in b.c.c, structures, a cuboc- 
tahedron, is a logical continuation of the first two. A 
smaller number of neighbors (eight) in the first 
coordination sphere of b.c.c, structures should unavoid- 
ably yield a smaller contribution to the crystal energy 
as compared with f.c.c, structures. However, owing 
to the larger range of distances essential for atomic 
interactions [curve (c), Fig. 1], the first and second 
coordination spheres make the main contribution to the 
energy of a b.c.c, crystal. In b.c.c, structures the 
distances from the central atom to atoms of the first and 
second coordination spheres differ by approximately 
15%, but the energies of atomic interaction between the 
central atom and atoms of the first and second 
coordination spheres are nearly the same. This follows 
from calculations performed by the pseudopotential 
method (Pick, 1967) and depicted in Fig. 3 for the 
lithium (b.c.c.) and aluminium (f.c.c.) crystals. Fig. 3 
shows the compression of the two atomic interaction 
curves along the horizontal axis in aluminium crystals 
in comparison with the lithium curves. The relatively 
gentle and deep first minimum of the alkali atom 
interaction curve contains distances from the central 
atom to atoms of the first and second coordination 
spheres in b.c.c, structures. Energies of interaction of 
the central atom with atoms of the first and second 
coordination spheres differ a little from the energy at 
the first minimum of the curve. The total number of 
atoms in the first and second coordination spheres in 
b.c.c, structures is 14. This is two atoms more than in 
the first coordination sphere in f.c.c, structures and 
consequently there is a gain in the potential energy of 
the structure. This explains why the b.c.c, structure is 
stable. The first minimum in the Al-atom interaction 
curve is very narrow and the only possibility of 

obtaining a potential-energy minimum for the crystal is 
an f.c.c, structure with 12 atoms in the first coordi- 
nation sphere. 

The pseudopotential method is applicable to non- 
transition metals, but is difficult to apply to the 
transition metals. This is why the functions of the two 
atomic interactions are only known for a restricted 
number of simple solids, and here an approximation is 
used for illustration, i.e. the curves depicted in Fig. I. 
This sort of function (potential Mie) has been suc- 
cessfully used in calculations of a number of properties 
of metals (Machlin, 1983). 

To avoid misunderstanding it is worth mentioning 
that the sum of the atom-atom interactions is not equal 
to the potential energy of metallic crystals, but these 
interactions are influential in choosing between f.c.c., 
b.c.c, and h.c.p, types of structure (Pettifor, 1983). 

Hexagonal and trigonal crystals are the subject of 
our next paper (Aslanov, 1988), where we consider the 
position of curve (b) in Fig. 1. Here we dwell only on 
the structure of polonium, which has a primitive cubic 
unit cell (the packing density of this structure is 
extremely low, only 52.36%). The first coordination 
sphere for any atom in the structure is an octahedron, 
the second a cuboctahedron. In diamond-like structures 
(possessed, in addition to diamond, by silicon, ger- 
manium and gray tin) the first coordination sphere is a 
tetrahedron, the second a cuboctahedron. These exam- 
ples and some other structures which will be con- 
sidered below demonstrate the role of the second 
coordination sphere in the formation of various crystals 
with minimum potential energy. However, the first 
coordination sphere in f.c.c, structures, and the second 
in b.c.c., polonium and diamond structures show one 
more important quality of crystal formation. Consider 
the central atom and the first coordination sphere of an 

UM 
Rydberg 

6-  

I I 
. . . .  l .c.c.-  A t  

-6 t,:.c 1 j 

Fig. 3. Atomic interaction curves for lithium and aluminium, 
calculated by the pseudopotential method. 
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f.c.c, crystal of an elemental substance. Any of the 
twelve atoms forming the first coordination sphere is 
absolutely equivalent to the central atom and therefore 
in the process of crystallization the surroundings of any 
such atom will be built up to a cuboctahedron by the 
atoms of the liquid phase. On the crystal surface, this 
process repeats itself infinitely during growth, the 
cuboctahedra being shifted by an equal distance parallel 
to one another (Fig. 4), resulting in the formation of a 
three-dimensional crystal lattice characterized by 
translation symmetry.  The strictly parallel shift of 
cuboctahedra is explained by the fact that a new 
cuboctahedron is not formed around each atom of the 
first coordination sphere. It is built up instead with the 
initial part of the cuboctahedron being a part of the 
central complex (five atoms including the central one) 
and having an orientation effect on the newly built 
cuboctahedron. Thus the translation symmetry results 
from a 'complex' of thirteen equivalent atoms experien- 
cing both mutual attraction and repulsion. Thus taking 
into consideration the second and following coordina- 
tion spheres permits the formation of different struc- 
ture types for inorganic crystals and the translation 
symmetry of crystals to be explained. 

For crystal structures in which the coordination 
number of the first coordination sphere is less than 
twelve (in the above examples coordination numbers 
were eight, six and four) the main role in the formation 
of translation symmetry is played by the second 
coordination spheres. Thus in the polonium and 
diamond structures each atom from the second coordi- 
nation sphere becomes the center for the formation of 

t 

Fig. 4. An f.c.c, structure showing the appearance of translation 
symmetry in the process of crystal growth. The initial central 
atom is indicated by a cross in a small circle. Its first 
coordination sphere (a cuboctahedron) is depicted by large 
circles. The central atom of the first coordination sphere, around 
which the cuboctahedron is built, is depicted by a cross in a large 
circle. The atoms of its first coordination sphere are shown by 
small circles. Atoms shared by two 13-atom complexes con- 
sisting of the central atom and atoms occupying cuboctahedron 
vertices are depicted by double circles or by an encircled cross, t 
is a translation. 

new coordination spheres placed one into another. The 
cuboctahedron of the crystal nucleus (including the 
central atom and two coordination spheres) is shifted 
parallel to itself so that the atom of the second 
coordination sphere of the nucleus becomes central and 
the central atom of the crystal nucleus enters the second 
coordination sphere. 

Body-centered crystals may start growing from the 
octahedron vertices (the second coordination sphere, 
Fig. 5). The central atom of the nucleus enters the 
second coordination sphere for any of the vertices of its 
second coordination sphere, and four adjacent vertices 
of the cube of the first coordination sphere of the crystal 
nucleus also enter the first coordination sphere of the 
atom at the octahedron vertex. Two coordination 
spheres forming around the octahedron vertex share 
five atoms with the initial complex which has an 
orientation effect and provides the strictly parallel shift 
of the coordination polyhedra and thus the translation 
symmetry. A b.c.c, crystal may also start growing from 
cube vertices if there are two coordination spheres, but 
then two coordination spheres around the cube vertex 
share only four atoms with the initial complex, which 
leads to the appearance of the translation symmetry in 
the crystal. The third coordination sphere, a cubocta- 
hedron, makes the formation of a crystal structure even 
more energetically advantageous. 

It should also be emphasized that in all the above 
examples the coordination polyhedra of the first sphere 
were included in the polyhedra of the second coordi- 
nation sphere and those of the second sphere were 
included in the polyhedra of the third coordination 
sphere, etc., so that all threefold axes of all the 

Fig. 5. The appearance of translation symmetry in b.c.c, crystals. 
The first coordination spheres of the initial and secondary 
complexes consist of small and large circles, the second 
coordination spheres are shown as small and large triangles. The 
central atoms of the initial and secondary complexes are denoted 
by a cross and a square, respectively. The rhombidodecahedron 
of the secondary complex is depicted by a solid line. t denotes the 
translation. 
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polyhedra coincided. This provided the minimum 
potential energy of interaction between the polyhedra of 
the first and second coordination spheres and the 
formation of a cubic crystal. 

The above scheme for crystal formation from a 
nucleus built by the central atom and two coordination 
spheres* is applicable not only to simple elemental 
materials (metals, inert gases, nonmetals) but also to 
various compounds. Thus if the central atom and the 
atoms of the second coordination sphere in the 
polonium-type structure are of the same kind (say, 
metal) and those of the first coordination sphere are of 
another kind (nonmetal), we arrive at the NaC1 
structure type, the metal and nonmetal sites in the 
coordination spheres being interchangeable. In the 
diamond-type structure or in crystals with a b.c.c. 
structure the central atom and the second coordination 
sphere may be formed by metal (or, vice versa, 

nonmetal) atoms, whereas the first coordination sphere 
is formed by nonmetal (or metal) atoms. We then arrive 
at the sphalerite or CsC1 structure types, respectively. 

In the fluorite (CaF 2) structure the central Ca atom is 
surrounded by two coordination spheres - a cube of F 
atoms and a cuboctahedron of Ca atoms. In the same 
way, each Ca atom of the second coordination sphere 
tends to surround itself with two coordination spheres. 
As a result, a crystal nucleus is formed. The perovskite 
(SrTiOa) structure has four coordination spheres 
around the central atom (Ti). The first one is an 
octahedron consisting of O atoms, the second a cube 
consisting of Sr atoms, and the third a truncated 
octahedron built from O atoms. These four coordi- 
nation spheres embrace one unit cell and also, partly, 
six neighboring unit cells, thus forming a 'stack' of the 
structure, with orienting atoms predetermining the 
translation symmetry of the crystal. The ReO 3 structure 
type is very similar to that of perovskite. The only 
difference is that ReO3 has no coordination sphere in 
the shape of a cube. In the perovskite-type structure the 
vertices of such a cube are occupied by Sr atoms. Both 
in perovskite and ReO 3 the octahedron and truncated- 
octahedron edges are equal to one another and are the 
shortest distances between the vertices of these two 
polyhedra, providing the minimum potential energy of 
the crystal. K2PtC16 (Bokii, 1954) differs from the 
perovskite type by distant coordination spheres (Fig. 6). 
The first coordination sphere of the central Pt atom (an 
octahedron) is built by C1 atoms, the second sphere 
consisting of K atoms is a cube, the third is a truncated 
octahedron formed by C1 atoms, and the fourth is a 
cuboctahedron with the vertices occupied by Pt atoms. 
The fourth coordination sphere in K2PtC16 completes 
the formation of the unit cell. Hence all four coordi- 
nation spheres should necessarily be taken into account 
when explaining crystal formation. Each Pt atom of the 

* One twelve-atom sphere in an f.c.c, crystal is the only exception 
to the general rule. 

fourth coordination sphere may be considered as the 
central one. The second, third, and fourth spheres 
exhibit an orienting effect on the formation of unit cells 
neighboring the initial one. 

The unit cell of BiF3-type crystals (Fig. 7) consists of 
the central Bi atom, the first coordination sphere is a 
cube of F(2) atoms at the site with T a symmetry, the 
second is an octahedron with the F(1) atoms in the sites 
with O k symmetry (vertices) and the third is a 
cuboctahedron of Bi atoms. Bi atoms from the third 
coordination sphere form the same coordination 
spheres as the central atom. This process occurs 
repeatedly during crystal growth. 

The example considered below shows that any 
combinations of the PRS's and ASRS's are worth 
considering. In the Cu20 structure (Bokii, 1954) the 
first coordination sphere (Fig. 8) of an O atom is a 
tetrahedron with Cu atoms at the vertices, the second is 
a truncated tetrahedron of Cu atoms and the third is a 
cube, the vertices of which are occupied by O atoms. At 
first glance, a tetrahedron and a cube do not match 
together since the vertices of a tetrahedron and a cube 
lie on one line with the central atom, thus making the 
packing rather loose. However, the experimental data 
confirm the existence of such a combination. 

(a) (b) (c) (d) 

Fig. 6. The K2PtCI 6 structure: (a) CI, (b) K, (c) C1, (d) Pt. 

(a) (b) (c) 

Fig. 7. The BiF 3 structure: (a) F(2), (b) F(1), (c) Bi. 

/,e"--,-,-_~ , .~..~__~j,\ 
~,-  , ~ " - , ,  , . , ~ "  ~ "~. 

(a) (b) (c) 

Fig. 8. The Cu20 structure: (a) Cu, (b) Cu, (c) O. 
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The sulvanite (Cu3VS4) structure (Fig. 9) may be 
represented by the following sequence of coordination 
spheres: a central V atom is surrounded in the first 
coordination sphere by S atoms occupying tetrahedron 
vertices; the vertices of the octahedron of the second 
sphere are occupied by Cu atoms; the third sphere is 
built by S atoms at the vertices of a truncated 
tetrahedron; the fourth sphere is formed by V atoms at 
the oetahedron vertices. These coordination spheres are 
a good prerequisite for the development of a crystal 
structure. 

In all the above examples the formation of structure 
types was initiated at the central atom. But there is 
another way of combining the PRS's and ASRS's - the 
initial point of a crystal nucleus is chosen to be the 
center of a cluster of atoms in the shape of a PRS or an 
ASRS. Thus in the spinel structure (Fig. 10) the central 
cluster consists of four A1 and four O atoms occupying 
cube vertices in such a way that the AI and O atoms 
both form tetrahedra. The vertices of such a cluster 
occupied by A1 atoms are surrounded by a truncated 
tetrahedron of O atoms, and a tetrahedron of O atoms 
from the initial cluster is surrounded by Mg atoms 
occupying tetrahedron vertices. The triangular faces of 
a truncated tetrahedron and the AI atoms of the initial 
cluster form half of a cube (the unit equivalent to the 
initial cluster) and therefore these cubes are built up 
from three A1 atoms and one O atom, which results in 
the formation around A140 4 cubes of coordination 
spheres built by truncated tetrahedra with O atoms at 
the vertices and tetrahedra of Mg atoms similar to the 

Another example of a structure with the central 
cluster is the Pt30 4 structure type (Bokii, 1954). The 
central cluster is an octahedron with Pt atoms at the 
vertices. The first coordination sphere is a cube of O 
atoms, the second is a cuboctahedron with the vertices 
occupied by Pt atoms. Each triangular face of the 
second coordination sphere is at the same time a face of 
an octahedron equivalent to the central cluster. Thus 
the translation symmetry appears to be due to the 
orientational effect of the second coordination sphere. 

In the Cr23C 6 structure (Fig. 11) the central cluster 
has the shape of an empty cube of Cr(3) atoms 
occupying the site with C3v symmetry. The first 
coordination sphere of the cluster is an octahedron with 
C atoms at the vertices, the second sphere is a truncated 
octahedron formed by Cr(4) atoms in the sites with the 
C2v symmetry, the third sphere is a cube of Cr(2) atoms 
in the sites with the T a symmetry, the fourth sphere is 
an octahedron of Cr(1) atoms in the site with the O h 

symmetry, the fifth sphere is built by two dual- 
truncated tetrahedra placed one into another with Cr(4) 
atoms at the vertices, the sixth sphere is a somewhat 
distorted truncated cube of Cr(3) atoms, and the 
seventh sphere is a truncated octahedron of C atoms. 

(a) (b) (c) (d) 
case of the cluster considered above. This procedure (e) 
repeats itself until the whole space is filled and the ~ ~ ~  
translation symmetry appears. In Fig. 10 two more 
coordination spheres are drawn for clarity. 

(i) (j) 
(a) (b) (c) (d) (k) (/) (rn) 

Fi 9 Thecu3vs4structure a s b c a  

l 
(n) (o) Lo) 

(a) (b) (c) (at) (e) Fig. I1. The Cr23C 6 structure: (a) central cluster Cr(3), (b) C, (c) 
Cr(4), (d) Cr(2), (e) Cr(1), (f) Cr(4), (g) Cr(3), (h) C. Another 

Fig. 10. The MgAI20 4 structure: (a) central cluster AI (filled circles) complex consists of central atom Cr(1) and coordination spheres: 
and O (open circles), (b) O, (c) and (d) Mg, (e) AI (filled circles) (0 Cr(4), (/') C, (k) Cr(3), (/) Cr(2), (m) Cr(4), (n) C, (o) Cr, (p) 
and O (open circles). Cr(3), (q) Cr(1). 
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The edges of the fourth coordination sphere are those 
of the central cluster (an empty cube). Thus 16 atoms 
of the initial seven spheres are shared with the 
neighboring formation consisting of the central cluster 
and seven coordination spheres. There are twelve new 
centers for the formation of such clusters and their 
coordination spheres, corresponding to the number of 
cube edges. The crystal continues to grow just from 
such centers. 

Another complex should be considered in this 
structure with central atom Cr(1). The first coordi- 
nation sphere is a cuboctahedron with Cr(4) at the 
vertices, the second an octahedron of C atoms, the third 
two dual-truncated tetrahedra inserted one into another 
with Cr(3), the fourth a cube of Cr(2), the fifth sphere a 
cuboctahedron of Cr(4), the sixth a truncated octa- 
hedron of C atoms, the seventh a rhombitruncated 
cuboctahedron of Cr(4), the eighth a distorted rhombi- 
cuboctahedron of Cr(3), and the last sphere a cube of 
Cr(1). 

The construction of structure types from the PRS's 
and ASRS's is applicable not only to metals and ionic 
substances but also to intermetallic compounds. The 
Cr3Si type (Fig. 12) consists of a central Si atom, the 
first coordination sphere of Cr atoms is a distorted 
('crystallographic') icosahedron which has lost its 
fivefold axes owing to deformation, the second coordi- 
nation sphere is a cube with the vertices occupied by Si 
atoms. The crystal is then built up around the Si atoms 
of the second sphere in the same way as around the 
central atom. The third sphere is built from Cr atoms at 
the vertices of a crystallographic icosahedron that is 
less distorted than the icosahedron of the first coordi- 
nation sphere - the edges of both icosahedra may be 
divided into two groups having different lengths, the 
edge ratio for the icosahedron of the first sphere is 
1:6/8, whereas the same ratio for the icosahedron of 
the third sphere is 1:7/8. The fourth coordination 
sphere is an octahedron with Si atoms at the vertices. 

In the Laves phases (fl-MgCu2), the central Mg atom 
is surrounded by a first coordination sphere (Fig. 13) of 
Cu atoms situated at the vertices of a truncated 
tetrahedron; the vertices of a double tetrahedron 
around the central atom are occupied by Mg atoms 
surrounded, in the same way as the central atom, with 
Cu atoms occupying the vertices of a truncated 
tetrahedron. Repeating the atoms in a similar fashion, it 

(a) (b) (c) (d) 

Fig. 12. The Cr3Si structure: (a) Cr, (b) Si, (c) Cr, (d) Si. 

is possible to fill the unit cell and obtain the translation 
symmetry. 

In the Ir3Sn 7 structure (Fig. 14) an empty cluster in 
the shape of a cube with Sn atoms [Sn(2) in the site with 
C3~ symmetry] at the vertices has the first coordination 
sphere of Ir atoms situated at the vertices of an 
octahedron and the second coordination sphere of Sn 
atoms occupying the vertices of a truncated octa- 
hedron [Sn(1) in the position with symmetry D2a]. The 
third coordination sphere is a cube of Sn(2) atoms, the 
fourth an octahedron of Ir atoms and the fifth a 
distorted truncated cube of Ir atoms. The further 
development of the structure occurs at the vertices of 
the unit cell just as was the case with its center. 

An unusual coordination polyhedron may be con- 
structed for the first coordination sphere of an Na atom 
in NaZn~3 (Fig. 15 ) -  a snub cube of Zn(2) atoms in the 
site with C= symmetry. The second coordination sphere 
of the Na atom is a cube with Zn(1) atoms occupying 
the vertices of the cube [the site of Zn(1) atoms has T h 
symmetry]. Each atom of the second sphere is 
simultaneously the central atom of the cluster of Zn~3 
atoms in which a Zn atom, Zn(1), is surrounded by 
Zn(2) atoms occupying the vertices of an icosahedron, 
three of which are shared with the initial snub cube. The 
second and the third coordination spheres of the Zn(1) 
atom are icosahedra with Zn(2) atoms at the vertices, 

(a) (b) 

Fig. 13. The fl-MgCu 2 structure: (a) Cu, (b) Mg. 

',~>.____~ 

(a) (b) (c) (d) 

(e) (f) 

Fig. 14. The Ir3Sn 7 structure: (a) central cluster Sn(2), (b) Ir, (c) 
Sn(1), (d) Sn(2), (e) Ir, (f) Ir. 
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the fourth sphere is cube of Na. These two complexes 
together give the translation symmetry. This process 
may be continued infinitely, which results in the 
appearance of the translation symmetry. 

The Mg2Cu6AIs(Mg2Zn~I ) structure (Fig. 16)may be 
represented as a combination of two types of com- 
plexes. The first type of complex is built by the central 
A1 atom, AI(1), in the position with T h symmetry and 
five coordination spheres. The first sphere is an 
icosahedron with Cu atoms at the vertices [Cu(2) atoms 
in the sites with C s symmetry]. The second coordina- 
tion sphere is a cube consisting of eight AI(3) atoms in 
the position with C 3 symmetry; the third sphere is a 
distorted icosahedron of 12 Mg atoms which supple- 
ment the cube to form a dodecahedron; the fourth 
coordination sphere is an icosahedron with AI(2) atoms 
at the position with C2v symmetry at the vertices; the 
fifth sphere is a distorted truncated cube of Cu(1) atoms 
(the symmetry of position C2). The second type of 

(a) (b) 

(c) (d) (e) (f) 

Fig. 15. The NaZn13 structure: (a) Zn(2), (b) Zn(1), (e) Zn(2), (d) 
Zn(2), (e) Zn(2), (f) Na. 

(a) (b) (c) (d) (e) 

(f) (g) (h) (13 

Fig. 16. The Mg2Cu6A15 structure. Complex I: (a) Cu(2), (b) AI(3), 
(c) Mg, (d) AI(2), (e) Cu(1). Complex II: (f) central cluster 
Cu(1), (g) AI(3), (h) AI(2), (0 Mg. 

complex has a cluster in the center - an octahedron 
with Cu(1) atoms at the vertices. Three Cu atoms of 
such a cluster are shared with a triangular face of the 
fifth coordination sphere of the first type of complex 
which results in a certain orientation of the complexes 
relative to one another. The first coordination Sphere in 
the second type of complex is a cube of AI(3) atoms, the 
second a distorted icosahedron of AI(2) atoms. The 
latter together with Al(3) atoms of the first sphere may 
be interpreted as a distorted dodecahedron. The third 
sphere is an icosahedron of Mg atoms. These spheres 
complete the unit cell and fulfil the conditions necessary 
for the development of the structure. 

In the CoAs 3 structure (Fig. 17) eight Co atoms and 
twelve As atoms form a cluster in the shape of a slightly 
distorted dodecahedron. Co atoms form a cubic 
fragment in the dodecahedron, each atom being shared 
by two dodecahedra, whereas As atoms enter only one 
dodecahedron. Therefore, Co atoms of the dodeca- 
hedral nucleus are built up with eight new dodeca- 
hedra at the vertices. The Co atoms interacting with one 
another form a primitive cubic cell. 

The Th3P 4 structure (Fig. 18) is of special interest. P 
atoms lie at the crossed threefold axes at equal 
distances from one another (one-quarter of the body 
diagonal of the cube). Each Th atom is surrounded by 
four threefold axes, the pairs of P atoms lying at the 
same distances from Th atoms. In other words, the 
coordination number of Th atoms is eight. The first 
coordination sphere of a Th atom is an eight-vertex 
dodecahedron in which threefold axes are directed 
along two g-type edges of four, forming each of two 
dihedra of the dodecahedron. Trapezoids of the 
dodecahedron are corrugated, with Th atoms lying on 
crystallographic axes 2I, in accordance with the sym- 
metry of a dodecahedron. 

(a) (b) 
Fig. 17. The CoAs 3 structure: (a)As, (b) Co. 

(a) (b) 

Fig. 18. The Th3P 4 structure: (a) P, (b) Th. 
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The second coordination sphere is a dodecahedron 
consisting of Th atoms. Th atoms of different 
trapezoids can be distinguished. Axes 74 of the dodeca- 
hedra built by P atoms pass along axis x for Th atoms 
of one trapezoid of the second coordination sphere and 
along axis y for Th atoms of another one, axis 74 of the 
central 'phosphorus' dodecahedron being directed along 
the z axis of the crystal. Axis 74 of the dodecahedron of 
Th atoms is also directed along the z axis but the 
dodecahedron of Th atoms (of the second coordination 
sphere) is rotated through an angle of 90 ° with respect 
to the P dodecahedron of the first coordination sphere. 
This process of 'expansion' of the crystal lattice may be 
continued infinitely. 

Discussion 

As follows from the examples considered above, the 
crystal-chemical model of atomic interactions is equally 
applicable to metals and intermetallic compounds, to 
substances with mainly ionic bonding, to covalent 
materials such as diamond, and to crystals with the van 
der Waals interactions (between inert-gas atoms). This 
is possible because the model takes into account the 
attraction between atoms and the mutual repulsion of 
filled electronic shells (skeletons) of atoms. The ability 
of the model to describe such a wide range of crystal 
structures should make it a universal tool for crystal- 
chemical analysis. 

In conclusion it should be noted that the examples 
used in the present paper were dictated not only by the 
crystal systems but also by the models of crystal 
structures collected at the Chemical and Geological 
Departments of the Moscow State University. Such 

models were a substantial help in the determination of 
the coordination spheres and made our work much 
more successful. 

The author is grateful to Dr V. T. Markov for 
assistance in producing the illustrations and to Dr L. I. 
Man who kindly translated this paper into English. 
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Abstract 

The crystal-chemical model of atomic interactions 
suggested by Aslanov [Acta Cryst. (1988), B44, 
449-458] has been verified on crystal structures of 
hexagonal, trigonal and tetragonal symmetry. The 
model includes the concept of close packing of spheres, 
but also explains the formation of structures with 
atomic arrangements deviating from closest packing. A 
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reduction of crystal symmetry affects individual atomic 
interactions and the shape of coordination polyhedra in 
the first and subsequent coordination spheres. 

Introduction 

In the previous paper (Aslanov, 1988) it has been 
shown that atoms in a crystal structure which interact 
one with another arrange in the crystal around the 
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